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Psychoacoustics of hearing impairment
&
Perceiving speech in noise



Three main types of hearing impairment

e Conductive

— Sound is not properly transmitted from the
outer to the inner ear

e Sensorineural
— Damage to the inner ear

e Retrocochlear
— Damage to the auditory nerve and beyond



What do we know about
physiological reflections of
sensori-neural hearing loss?

focus on hair cell damage



Auditory Nerve Structure
A Tuning curves
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Outer Hair Cells are relatively

vulnerable to damage, leading to ...

e Decreases in basilar membrane
movement and hence increased
thresholds to sound

— hearing loss
e A loss of cochlear compression (a
linearised input/output function)
- reduced dynamic range
— loudness recruitment
e Loss of frequency tuning (analogous to

widened filters in an auditory filter
Dank).

— degraded frequency selectivity
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Frequency response of a single place on
the BM in an impaired ear (furosemide)
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Inner Hair Cell (IHC) damage ...

e | eads to a more sparse representation of
all auditory information passed on to
higher auditory centres.

e There are possibly even regions of the
cochlea without any IHCs — so-called
dead regions.

e Hence, there may be a degradation of a
wide variety of auditory abilities (e.g.
temporal resolution).
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Figure 16.5. Comparison of cochlear pathology with the audiogram of a human
patient. A. Patient’s cytocochleogram, showing in pictorial form the hair cells (cir-
cles) remaining in each of the four rows of hair cells, regardless of their condition,
plotted as a function of distance from the stapes. Note the extensive hair cell loss
in the most basal 12 mm. B. Patient’'s audiogram, showing a profound hearing loss
above 2 kHz (top scale of abscissa). The apical border of the extensive hair cell loss
corresponds well with the 3 kHz place on the characteristic-frequency/location map
for primary auditory neurons in humans (bottom scale of abscissa). (From Schuknect,
1993, with permission.®)



Auditory Nerve Fiber Responses From Damaged Cochleae
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Psychoacoustic consequences of sensori-
neural (cochlear) hearing loss

e Raised thresholds

e Reduction of dynamic range and
abnormal loudness growth

e Impaired frequency selectivity

What is the impact on speech perception?



A normal auditory area
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An auditory area in sensori-
neural loss
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Hearing Loss & Speech Perception
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The Role of Audibility

e Much of the impact of hearing loss
is thought of in terms of audibility

e How much of the information in
speech is audible?
- Over frequency
— QOver intensity

e Consider the audible area of
frequency and intensity in relation
to the range of frequencies and
intensities in speech
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Speech energy and audibility
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Intelligibility can be
predicted from the portion
of the speech range that is
audible.

Hearing aids can be set to
increase audibility by overall
amplification and by shaping
of frequency response
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Articulation Index (Al) or
Speech Intelligibility Index (SII)

e An attempt to quantify the role of
audibility in speech perception

e Related to standard rules for setting
HA frequency response

e Intelligibility is assumed to relate to a
simple sum of the contributions from
different frequency bands

e Some frequency bands are more
important than others
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Al can predict the frequency response of a hearing
aid for a given audiogram that should maximise
intelligibility.

Similar to standard HA fitting rules, although these
generally recommend less gain than Al where losses
are more severe.
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Al predictions

Al predictions reasonable for mild and moderate hearing
losses. But the effects of audibility in severe and profound
losses are not enough to explain limits to speech recognition.

Score (Proportion Correct)

e

0.2 0.4 06 08 1.0 0.2 0.4 0.6 0.8 1.0

Articulation Index Articulation Index

Figure 8.1: Results of Pavlovic (1984) comparing speech recognition scores of
hearing-impaired subjects with predictions based on the AL. Each number represents
the mean score across subjects for a specific condition of filtering/background noise.
For subjects with mild losses, the predictions are accurate (left panel); for subjects
with more severe losses, the obtained scores fall below the predicted values (right

panel)



‘Dead’ regions: An extreme
case of increased threshold

e Regions in the inner ear with absent or
non-functioning inner hair cells (IHCs)

e No BM vibrations in such regions are
directly sensed

e But spread of BM vibration means that
tones can be detected ‘off-place’

- by auditory nerve fibres typically sensitive to a
different frequency region

e Most clearly seen when measuring PTCs
— directly interpretable



Psychophysical tuning curves (PTCs)
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Psychophysical tuning curves (PTCs)

Determine the minimum level of a narrow-band masker at
a wide variety of frequencies that will just mask a fixed
low-level sinusoidal probe.
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Physiological TCs for a range of
auditory nerve fibres: Normal hearing
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Hearing loss without a dead
region
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Hearing loss with a dead region
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Diagnosing dead regions

e PTCs perhaps clinically impractical

e TEN test (threshold equalizing noise)



Audibility accounts don't
explain everything

e Good predictions of speech
intelligibility from audibility hold only
for mild to moderate hearing losses

e Complete restoration of audibility
with more severe losses cannot
restore intelligibility

e And these predictions only hold for
speech in quiet



Reduced dynamic range in
sensori-neural hearing loss
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Categorical scaling of loudness
ACALOS (adaptive categorical loudness scaling)
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ACALOS category scale.
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Brand and Hohmann (2002)
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FIG. 5. Loudness functions with the median parameters displayed in Table L.
Normal-hearing subjects with adaptive procedure (solid), normal-hearing
subjects with constant stimuli procedure (dashed), subjects with hearing
impairment with adaptive procedure (dotted), subjects with hearing impair-
ment with constant stimuli procedure (dash-dotted).
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Changes in frequency selectivity reflect loss of nonlinearity
Rosen & Baker (2002)
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Normal compared to impaired
excitation patterns - quiet

Acoustic or Excitation level (dB)
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Normal compared to impaired excitation
patterns - noise

F1 F2 F3 F1 F2 F3
_—— \‘
o A S i
=, » \ —
— o ~1 o -
q>) \/_‘-\, Fe=m e /// \ I‘ j \ ‘ .
2 / r /{ﬁ,\/v \ 1 ~— Impaired
s L | AN AN F | M excitation pattern
— | A T = =
© AW A R
'T;J ~_Normal
W “ - excitation pattern
5 Mm
S Acoustic
(7))
= * spectrum
Q 70
< 0

1000 2000 3000 4000 5000 0 1000 2000 3000 4000 SOt]O

/il vowel in noise /a/ vowel in noise

SNR = +6 dB
Normal excitation pattern retains much of formant structure in noise

Impaired excitation pattern has reduced formant structure in noise



What can current hearing aids
do for ...

e Hearing loss
-7

e Reduced dynamic range &

loudness recruitment
-7

e Degraded frequency selectivity
-?

e Dead regions
-?



Hearing speech in noise



Essential terminology

e signal or target
— what you are trying to listen to
- typically speech or music or ...

e 'noise’ or masker
— what you are trying to ignore

— can be noise like from a hoover, but also other
speech

e signal to noise ratio

- The amount of energy in the signal divided by
the amount of energy in the noise

— expressed in dB



Why is listening to speech in

noisy backgrounds interesting?

Most speech is not heard in quiet.
— Classrooms can be really noisy.
People vary a lot in how well they can understand speech in the
presence of other sounds.
Difficulties in understanding speech in noise are a very common
complaint in the clinic
Lots of developmental disorders seem to have an impact on this
ability
- Language impairment
— Autism spectrum disorders
— Auditory processing disorder (APD)?
Hearing impairment makes perceiving speech in noise difficult.
— Cochlear implant users have great difficulties

Being a non-native speaker makes it harder

Effects of age

— Ageing itself (=60 y.0.) may lead to poorer speech perception in certain
kinds of noise.

— Younger children (=12 y.o.) appear to be more affected by certain kinds of noise



Some determinants of

performance: I

e The nature of the target speech
material

— context
e e.g., the so-called SPIN test, Kalikow et al.,
1977

— Throw out all this useless junk ...
— We could have discussed the junk ...

— number of alternative utterances

e listening for digits when given a telephone
number vs. an individual’'s name

e ‘easy’ (mouth) vs ‘hard’ (mace) words (see
Bradlow & Pisoni, 1999)

— tied to frequency of usage and size of lexical
‘neighbourhoods’



Some determinants of
performance: II

e The nature of the background noises
- level (SNR)
- spectral characteristics
— genuine ‘noise’: periodic or aperiodic?
—and/or other talkers

e how many there are

e speaking your own language or a language
you don’t know

- How ‘'attention-grabbing’ the background
noises are



Some determinants of
performance: III

e The configuration of the environment
— Open air or in a room?
- How ‘dry’ is a room?
o effects of reverberation
- spatial separation between target and
noise
e or, the transmission system (e.qg.
mobile telephone)

— distortion, reverberation, noise



Some determinants of
performance: IV

e Talker characteristics
— Talkers vary considerably in intrinsic
intelligibility
— Talkers can vary their own speech

depending upon demands of the situation
(hyper/hypo distinction of Lindblom, 1990)

e manipulations in vowel space, prosody, rate
— Match between talker and listener accents
— Individual familiarity



Some determinants of
performance: V

e Listener characteristics

— Linguistic development
el1vslL2
e vocabulary knowledge
e ability to use context
- Hearing sensitivity and any hearing
prosthesis used
— Cognitive abilities
e working memory

e linguistic closure skills: piecing together a
sensible message from incomplete information



Focus on factors more
centrally related to audiology



The simplest case:
A steady-state background noise
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Much is understood about what
makes one steady noise more or
less interfering than another
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‘Energetic’ masking

Noises interfere with speech to the extent
that have energy in the same frequency
regions

Can be quantified in the ‘articulation index

Reflects direct interaction of masker and
speech in the cochlea, which acts as a
frequency analyser

Hearing impaired listeners are more
affected by steady noises ...

— because they typically have impaired
frequency selectivity (wider auditory filters).
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Better frequency selectivity
keeps noise in its place
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But noises are typically not
steady
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Fluctuating maskers afford
‘glimpses’ of the target signal

\ 7|/| v

masker



‘dip listening’ or ‘glimpsing’
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Hearing impaired listeners have
limited ‘glimpsing’ capabilities
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Performance in the SPIN task as a function of SNR for
modulated and unmodulated noises (not an effect of
ageing) Takahashi & Bacon (1992)



Takahashi & Bacon (1992)
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FIGURE 1. Mean pure-tone audiometric thresholds (in dB HL)
tor each subject group. The three older groups are represented
by open symbols and the young group by closed symbols.
Error bars indicate =1 standard error. Data for the older groups
have been shifted horizontally.

e SPIN low
probability
sentences

e SAM noise at 8
Hz, 100%
modulation



Why is ‘dip’ listening limited in
hearing-impaired listeners?

e Audibility can be an influence

e Some of the lack of masking release
may be due to SNRs being higher for
HI listeners.



little glimpsing for CI users
Nelson et al. (2003)

speech-spectrum-shaped masking noise square-
wave modulated added to IEEE sentences
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Percent Correct Key Words

100

CI users

Note much higher SNRs
(+8 and +16 vs -8 and -16 dB)
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But maskers can be periodic
too, most importantly, when
speech is in the background.



Miller (1947)
‘The masking of speech’

It has been said that the best place to
hide a leaf is in the forest, and
presumably the best place to hide a
voice is among other voices.
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Another kind of ‘noise’
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Miller (1947)

Increasing the number of talkers in the

masker
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It is relatively easy
for a listener to
distinguish between
two voices, but as
the number of rival
voices is increased
the desired speech
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Jabber.’
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Why is it easy to ignore one
other talker and not more?

e More opportunities to glimpse with
one talker

e Differences in pitch contour for two
talkers makes it easier to ignore one
and attend to the other



A useful distinction

e Energetic masking

— maskers interfere with speech to the extent
that have energy in the same time/frequency
regions

— primarily reflecting direct interaction of masker
and speech in the cochlea

- relevance of glimpsing/dip listening

e Temporal and/or spectral ‘dips’ in the masker allow
‘glimpses’ of target speech

e Informational masking
— everything else!



Caveat: Another kind of masking

e What we have called ‘energetic masking’ may in
fact be two different things
- Genuinely energetic masking (as described before)
— Modulation masking (MM)

e MM is the disruptive effect that modulations in
the masker have on the modulations in the target
- So it's not the energy in the masker that is so important
— Similar to EM, in happening at the periphery (needing to
be in the same time/frequency)

e For the details

- Stone, M. A., Fullgrabe, C., & Moore, B. C. J. (2012).
Notionally steady background noise acts primarily as a

modulation masker of speech. J Acoust Soc Am, 132,
317-326.



Informational masking

e Something to do with target/masker
similarity?
- signal and masker ‘are both audible but the
listener is unable to disentangle the elements

of the target speech from a similar-sounding
distracter’ (Brungart, 2005)



Informational masking: a finer
distinction (Shin-Cunningham, 2008)

e Problems in ‘object formation’
— Related to auditory scene analysis

— similarities in auditory properties make segregation
difficult

e voice pitch, timbre, rate
1 woman, 1 man 2 men

e Problems in ‘object selection’
— Related to attention and distraction
- the masker may distract attention from the target

e .g., more interference from a known as
opposed to a foreign language



EM & IM appear to operate at different
parts in the auditory pathway

e Energetic masking at the periphery, in the
cochlea

— Early developing abilities
- Increased EM from hearing impairment
e Informational masking at higher centres
— Late developing abilities?
— Increased IM in younger and older listeners?

— But aspects of IM can be made difficult by
peripheral factors
e e.g., CI users difficulties with auditory scene analysis



Listening to speech in 'noise’

W\ ¢S U\

in quiet in steady noise against another talker



Children find it hard to ignore
another talker

masker
Bl steady noise
B another talker
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Slow development of abilities that
minimise IM
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Increased difficulty in older
listeners for some noises

»-' speech-shaped noise
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CI users show little variation in SRT
for different maskers
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Spatial Release from Masking:
when target and masker come from
different directions

e Head-shadow effects often result in one ear
having a better SNR than the other (the “better-
ear” advantage).

— not a result of genuine binaural interaction

e Additionally, binaural mechanisms can produce
improvements in speech comprehension as well as
detection of tones (BMLD).

- ‘squelch’ (aargghh!!)

e These operate optimally in different frequency
regions

- Why?
e Spatial separation reduces both EM and IM



Bronkhorst & Plomp (1988)

Measured HRTFs on an acoustic manikin to
simulate spatial cues over headphones

Allowed the separation of
ITD from ILD cues so each
could be presented in
isolation

Simple sentences in an
adaptive procedure to
measure SRT

target speech always straight
ahead; speech spectrum noise
varied in position




Bronkhorst & Plomp (1988)

speech always at 0°

ILD more important
than ITD

- why?

But both really
matter

Implications for HI?
— monaural fittings

- mismatched
hearing aids (e.g.,
knee point of
compression)
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FIG. 5. Mean speech reception thresholds obtained in experiment I for
three different noise types : FF (free field ), dL (headshadow only), and dT
(ITD only). The closed data points represent results of Plomp and Mimpen
(1981) obtained in a free field.



What you need to know

e Energetic vs. informational masking
e Object formation vs. object selection
e glimpsing/dip listening

- What it is

—That HI listeners find it harder

—That CI listeners find it harder still
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